PROGRAMMING TIPS by Joe LEON :-

Page 3
Did you want an INPUTQ command ?, now you can plus some other useful tips you can use in your own programs.

HI-RES DRAWING ROUTINES by Don ISLES :- pages 4-6
Even though it appears just a simple house there are advanced maths involved. A lot could be learned by studying the routines.

OTHER VZ USER GROUPS AND PUBLICATIONS :-
Page 6
8K BUILT IN BATTERY RAM by Joe LEON Pages 6-8
This $8 K$ BIB Ram is even more useful than the $2 K$ Version. It's ideal for experimenting with your Basic and or Dos Rom/s.

BASE CONUERTER by Dave MITCHELL :- Pages 9-10
If converting DEC to HEX to BINARY to LO-BYTE HI-BYTE leaves you a bit confused then this little utility makes it easy for you as it takes the confusion out.

UZ MODS INFORMATION by Ross wOODS :- Page 10
We had quite a lot of enquiries over the last couple of months which took us a while to answer. We apologise to our enquirers as some of them had to wait some time for a reply. Two of the answers are reproduced.

UZ TOKENS AND WORDS by Robert QUINN :- Pages 11-13
At long last all the ADDRESSES for WORDS, TOKENS and ROUTINES are there for your perusal. The DISK WORDS were dealt with in last issue.

Like some of you I was confused by the program WORDS as some single character words were displayed as graphic characters when I was expecting the inverse of it. I'm confused no more as R. Quinn supplied the answer, see Pages $12-13$.

GALAXON GAME REVIEW by Peter J. HILL (NZ) :- Page 14
This game scores tops with Peter and he does a marvelous job reviewing it.

AEM4505 TONE CONTROL by Dave BOYCE :- Pages 15-16
Anyone looking to enhance their Speech Synth. will find it hard to go past this unit. The programs will be in next issue.

DOT MATRIX PRINTERS by Larry TAYLOR :-
Pages 17-18
Larry takes some of the confusion out and I learned some things about my printer which was'nt in the manual. Well worth the reading.

ADS, ADS, AND SOME MORE ADS :-
Pages 19-20
Our advertising is increasing with a couple new ads. Read all about it.

BELIEVE IT OR NOT :-
My son (17) takes great delight in telling everybody that he taught his Dad all he knows about computers. I wish it was'nt half true. Anyone like to adopt him as he'll be up for adoption soon.

CONGRATUIATIONS JEANETTE AND DAVE MITCHEII DN YOUR NEIT ARRIVAI BABY BOY - R ROBERT THOMAS MITOHEII
$10{ }^{\prime}{ }^{\prime}{ }^{\prime} *$
$20{ }^{\prime} *$ HINTS AND TIPS FOR PSEUDO INPUTE, SIMPLE TIME DEIAY NOT *
30 '* USING A LOOP AND USING THE ELSE STATEMENT - BY JOE LEON *
40 '***
50 :
60 CLS: GOSUB 100: GOTO 10
100 CLS: PRINTE249, "Y";:PRINTQ230, ; : INPUT"ARE YOU SURE Y/N ";A\$
120 IFA $\$=" N " T H E N 900 E L S E I F A \$=" Y " T H E N 800 E L S E 100$
800 PRINT@360, "YOU PRESSED 'Y'":SOUND30, $1 ; 20,1 ; 0,5:$ RETURN
900 PRINT@360, "YOU PRESSED 'N'":SOUND30, $1 ; 20,1 ; 0,5:$ RETURN

Most persons with a computer can learn some programming techniques just by studying someone else's programs. It's how I learned and am still learning. And now to the hints.

INPUTQ :-

The $V Z$ does not have this command, but it is easy to simulate.
100 PRINT@230, ; : INPUT"ARE YOU SURE Y/N "; A
The trick is to put a 'PRINT@ 230, ; ' before your INPUT statement.
FLASHING CURSOR OUER Y OR N : -
If you typed in the little program and RUN it you will notice that the CURSOR is flashing over the 'Y'. Again it's simple to achieve. The tip is to PRINT the ' Y ' before the INPUT command. Study Line 100 on how it's done.

TIME DELAY :-
Although the $U Z$ has a wiped out TIME\$ command, but unfortunately no processing routine for it. So instead of using a loop there is a another way. EG :- SOUNDO,5. By using a, θ^{\prime}, for the first SOUND parameter we have a simple time delay. See Lines 800 and 900 for examples. The second SOUND parameter can be from 1 to 9 , with 1 giving shoritest delay, 9 the longest.

Using the ELSE Statement : -
By using ELSE in Line 120 we have compacted to one line what normally would take two or three. EG : -

120 IFA $\$=" N " T H E N 900 E L S E I F A \$=" Y " T H E N 800 E L S E 100$

120 IF $A \$=" N "$ THEN 900
130 IF A\$="Y" THEN 800
140 GOTO 100

As you can see by using ELSE we eliminated two Lines, saved memory space and the program will RUN faster. The program as it is will not accept any INPUT exept for a, Y , or ' N '. Lines 100 and 120 are heart of routine while the other lines demonstrate routines action.

The COLON (:)
As you may have noticed the colon is by itself in line 50. It can serve two functions used that way.

1) To reserve Line/s for future use.
2) To use as a divider between routines in your programs. See the HI-RES house LISTING in this issue for a perfect example. A ", " (Short form REM) could also be used, but it takes three bytes as against one for the COLON.

PROGRAMME EXPLANATION OF HI-RES DRAWING ROUTINES

Lines 20 to 80 describe the programme and gives the choice of gable or round roof on the house.

Line 80 sets the value of 'R' at ' 0 ' for gable roof or ' 1 ' for round roof.

Line 100 sets graphic mode.
Lines 110 to 170 establishes background colour.
Lines 200 to 250 draws path.
Line 220 causes the path to slant to the left.
Lines 255 to 290 draws front wall of house.
Line 295 sets colour of roof.
Line 300 selects. roof shape.
Lines 305 to 330 draws gable roof.
Lines 340 to 375 draws a round roof using the trigonometrical functions of sine (SIN) and cosine (COS). As the trig. functions in the $V Z$ are in radians the angle value must be divided by 57.2957 in Line 345 prior to applying the function.

Lines 380 to 490 draws the fence.
Lines 500 to 600 draws the door.
Lines 610 to 820 draws the windows.
lines 860 to 950 draws th trees.
Line 1000 keeps the $V Z$ in graphics mode by providing an endless loop to prevent the $V Z$ returning to text mode.

Line 2000 provides an option for disk drive owners to save the Hi-Res picture of the house to disk. Just put a REM in front of GOTO in Line 1000 .

NOTE :- As the program consists of quite a few subroutines you could type in line 1000 after line 180 was typed in. Then you could RUN the program to see what the first subroutine does and do the same for each subsequent subroutine. It may help you to understand how SET(X/Y) works.


```
2 '**************************************************************
4 '* HI-RES DRAWING ROUTINES FOR GABLE OR ROUND ROOF HOUSE *
6'* BY DON ISLES - HEHBER OF HUNTER VALLEY VZ USERS' GROUP *
8 *************************************************************
10 :
20 CLS:PRINT:PRINT* THIS PROGRAMME IS DESIGNED TO"
30 PRINT" DRAW A HOUSE, FENCE AND TREES.
40 PRINT" YOU HAVE CHOICE OF ROOF SHAPE, GABLE OR ROUND.
50 PRINT:PRINT
```



```
70 PRINT:PRINT" OR*:PRINT
80 INPUT" PRESS [T THEN RE|HMRNA FOR ROUND ROOF m;R
90 :
```



```
    100 HODE ( 1)
    110 COLOR 3
    120 FOR Y=0 TO 60
    130 IF Y=17 THEN COLOR 2
    140 IF Y=57 THEN COLOR 4
    150 FOR X=0 TO 120
    160 SET (X,Y)
    170 NEXT X:NEXT Y
    180 :
```



```
    200 B=40:C=5
210 FORY=47TO56
220 B=B+1:C=C+. 15
2 3 0 ~ F O R X = B T O B + C ~ C
240 SET(X,Y)
250 NEXTX:NEXTY
251 :
```



```
255 COLOR3
260 FORY=46TO25STEP-1
270 FORX=20T065
280 SET (X,Y)
290 NEXTX:NEXTY
291 :
```



```
295 COLOR4
300 IF R=1 THEN 340
305 B=16:C=69
310 FOR Y=24 TO 12 STEP -1
315 B=B+2:C=C-2
320 FOR X=B TO C
325 SET(X,Y)
330 NEXT X:NEXT Y
335 GOTO 379
340 FOR M=20 TO 90 STEP 2
345 N=M/57.2957
350 L=COS(N)*27
355 Y=SIN(N)*14
360 FOR X=0 TO L
365 SET ( 42+X, 29-Y)
370 SET (43-X, 29-Y)
375 NEXT X:NEXT M
377 :
```



```
380 COLOR1:FORY=51 TO 54 STEP 3
385 FOR X=0 TO 44
390 SET (X,Y)
395 NEXT X:NEXT Y
```

```
400 FOR Y=51 TO 54 STEP 3
```

400 FOR Y=51 TO 54 STEP 3
410 FOR X=61 TO 120
410 FOR X=61 TO 120
420 SET (X,Y)
420 SET (X,Y)
430 NEXT X:NEXT Y
430 NEXT X:NEXT Y
440 FOR X=0 TO 45 STEP 5
440 FOR X=0 TO 45 STEP 5
450 FOR Y=49 TO 56
450 FOR Y=49 TO 56
460 SET (X,Y)
460 SET (X,Y)
470 NEXT Y:NEXT X
470 NEXT Y:NEXT X
4 7 5 ~ F O R ~ X = 6 0 ~ T O ~ 1 2 0 ~ S T E P ~ 5 ~
4 7 5 ~ F O R ~ X = 6 0 ~ T O ~ 1 2 0 ~ S T E P ~ 5 ~
480 FOR Y=49 TO 56
480 FOR Y=49 TO 56
485 SET (X,Y)
485 SET (X,Y)
490 NEXT Y:NEXT X
490 NEXT Y:NEXT X
495 :

```
495 :
```



```
500 FOR Y=46 TO 37 STEP -1
```

500 FOR Y=46 TO 37 STEP -1
510 FOR X=40 TO 45
510 FOR X=40 TO 45
520 SET (X,Y)
520 SET (X,Y)
530 NEXT X:NEXT Y
530 NEXT X:NEXT Y
535 COLOR 4
535 COLOR 4
540 FOR X=39 TO 46 STEP 7
540 FOR X=39 TO 46 STEP 7
550 FOR Y=46 TO 37 STEP - k
550 FOR Y=46 TO 37 STEP - k
560 SET (X,Y)
560 SET (X,Y)
570 NEXT Y:NEXT X
570 NEXT Y:NEXT X
580 FOR X=39 TO 46
580 FOR X=39 TO 46
590 SET(X,36)
590 SET(X,36)
595 NEXT X
595 NEXT X
600 SET (41,41)
600 SET (41,41)
502:

```
502:
```



```
6 1 0 ~ C O L O R ~ 2 ~
```

6 1 0 ~ C O L O R ~ 2 ~
620 FOR Y=31 TO 39
620 FOR Y=31 TO 39
630 FOR X=26 TO 30
630 FOR X=26 TO 30
640 SET (X,Y)
640 SET (X,Y)
650 SET (X+29,Y)
650 SET (X+29,Y)
6 6 0 ~ N E X T ~ X : N E X T ~ Y ~
6 6 0 ~ N E X T ~ X : N E X T ~ Y ~
6 9 0 ~ C O L O R ~ 4 ~ A
6 9 0 ~ C O L O R ~ 4 ~ A
700 FOR Y=30 TO 40 STEP 5
700 FOR Y=30 TO 40 STEP 5
710 FOR X=26 TO 30
710 FOR X=26 TO 30
720 SET (X,Y)
720 SET (X,Y)
730 SET (X+29,Y)
730 SET (X+29,Y)
740 NEXT X:NEXT Y
740 NEXT X:NEXT Y
780 FOR X=25 TO 31 STEP 6
780 FOR X=25 TO 31 STEP 6
790 FOR Y=30 TO 40
790 FOR Y=30 TO 40
800 SET(X,Y)
800 SET(X,Y)
810 SET (X+29,Y)
810 SET (X+29,Y)
820 NEXTY:NEXTX

```
820 NEXTY:NEXTX
```



```
860 FOR Y=41 TO 34 STEP -1
870 SET(80,Y)
875 SET(107,Y)
880 NEXT Y
890 COLOR 1
900 B=69:C=91
905 FOR Y=33 TO 12 STEP -1
```



```
860 FOR Y=41 TO 34 STEP -1
\(870 \operatorname{SET}(80, Y)\)
875 SET( \(107, Y\) )
880 NEXT \(Y\)
\(900 \mathrm{~B}=69: \mathrm{C}=91\)
905 FOR Y=33 TO 12 STEP -1
```

$910 \mathrm{~B}=\mathrm{B}+.5 \div \mathrm{C}=\mathrm{C}-.5$
920 FOR $X=B$ TO C
$930 \operatorname{SET}(X, Y)$
940 SET ($\mathrm{X}+27, \mathrm{Y}$)
950 NEXT X:NEXT Y
1000 GOTO 1000
2000 BSAVE"HOUSE", $7000,77 \mathrm{FF}$

SUBSCRIPTION - H.V.UZ.JOURNAL - 6 MONTHS $\$ 9.00-12$ MONTHS $\$ 18.00$ New Zealand - 6 MONTHS $\$ 12.00-12$ MONTHS $\$ 24.00$

MEETINGS - 2nd. FRIDAY of MONTH at NEW LAMBTON COMMUNITY CENTRE CNR. ALMA RD. and CROMWELL ST. NEW LAMBTON - Upstairs Hall.

NOTE :- When writing to any above or H.V.VZ. Users' Group for information please enclose a S.S.A.E. or 2 Int. Reply Coupons.

The 2K ZERO Power Ran featured in issue \# 12 has it's uses. It fills up the $2 K$ gap nicely left by the DOS. One of it's limitations is the small memory size available. This article deals with an $8 K$ version. Like the $2 K$ one the $8 K$ Ram also has Built In LITHIUM Batteries and will be refered to as 8K BIB (Built In Batteries) Ram. Data rentention in the absence of power is over 10 years after which it behaves like a normal CMOS Ram.

Non Disk Drive owners will most likely put the 2 Rams in the 10 K Cart. area. Although the $8 K$ BIB Ram can be used there it can be put to more productive work.

This $8 K$ BIB Ram will prove to be most useful in activating all the hidden commands/functions in the Basic Roms or enhancing the DOS. Imagine being able to change at will any command or routine or replace them with your own. The Basic and DOS Roms are full of bugs which persons who know how will be able to fix.

Before proceeding with the article I would like to point out that you'll need the Technical Reference Manual for reference and trouble shooting. And now to the project. There are five circuits although two are very similiar and we'll deal with each one in turn.

8K BIB RAM CIRCUIT :-

The 74LS138 is configured to decode in 8 K blocks. Using SW3 (Switch 3) you can place the $8 K$ BIB Ram in the following memory locations. $0000 \mathrm{H}-1 \mathrm{FFFH}$ (Rom 0), $2000 \mathrm{H}-3 F F F H$ (Rom 1), $4000 \mathrm{H}-5 \mathrm{FFFH}$ (Dos Rom) and at C000H-DFFFH.

If you have a VZ200 then you may have to select a lower $0 / P$ than $0 / \mathrm{P}$. 6. the idea of having the 8 K BIB Ram at higher memory is to be able to transfer the contents of one of the 3 lower $8 k$ blocks for modification. Then when it's done, switch out one of the $8 K$ blocks and switch in the $8 K$ BIB Ram in it's place for testing.

Switch 1 is the WRITE ENABLE/DISABLE Switch. Close to WRITE, Open to WRITE PROTECT.

Switch 2 is optional. It allows you to disable the 8K BIB Ram. Close to disable, Open to enable.

VZ200 MODS CIRCUIT :-
MOST UZ200's have 2X8K Basic Roms. These will have to be disabled or enabled in turn as shown in the diagram. For both Roms the CS (Chip Select) line must be cut and the circuit within the broken line box inserted. Switch 4 is Double Pole Triple Throw type.

Switch position 1 - Rom 0 and Rom 1 are enabled.
Switch position $2-R o m$ is disabled and Rom 1 is still enabled.
Switch position 3 - Rom 0 is re-enabled while Rom 1 is disabled.

NOTE :- Any switching must be done with the power offexcept
for Switch 1 which can be used any time.

BK BUIIT IN BATT. RAM CONT. . . 8 VZ 200/300 MODS :-

This circuit is for VZ 200/300 with 16 K Roms. The decoder (U3-74LS139) in VZ200 and (U13) in VZ300 send out Rom 0 and Rom 1 CS signals. They are ANDed together by the DIODE AND GATE which is fed into the CS input pin of the 16 K Rom. The same switch arrangement as with the previous mod. applies. No tracks have to be cut as it is easier to unsolder one end of the DIODE and make your connections to that end making sure it is the correct end. In the vacated hole from the DIODE you can put in the switch lead.

DOS MOD :-
This is even simpler to achieve. Cut the track between pin 20 of the 8 K Rom and Ground and insert Resistor and Switch as shown in the circuit.

U3 - 74LS139 VZ200 DECODER :-
Unlike the 74LS 138 this is a Dual Decoder. I labelled each half ' A ' and ' B ' respectively. Side ' A ' is configured to decode in 8 K blocks while side 'B' decodes in 2 K blocks.

Before proceeding further a bit of an explanation on decoding and CS (Chip Select) about which I had some enquiries. I'll use the 74LS 138 as an example.

The INPUTS decide what size blocks it will decode in. Starting with $0 / P D$ to $0 / P 7$ each $0 / P$ goes to zero volts in turn activating each Ram/Rom the $0 / P$'s are connected to. Only one Ram/Rom can be active at any one time. The CS select pin has to be taken to zero volts to activate the particular Ram/Rom. So inversely if we want to deactivate a Ram/Rom we can use a pull up resitor to +54 as shown in the circuits.

In the tables below the addresses are given for each decoded block for both the 74LS138 and 74LS139 decoders.
74LS 138 decoder
O/P $0-0000 \mathrm{H}-1 \mathrm{FFFH}$ (ROM 1)
$0 / \mathrm{P} 1-2000 \mathrm{H}-3 \mathrm{FFFH}$ (ROM 2)
$0 / \mathrm{P} 2-4000 \mathrm{H}-5 \mathrm{FFFH}$ (DOS ROM)
$0 / \mathrm{P} 3-8000 \mathrm{H}-7 \mathrm{FFFH}$
$0 / \mathrm{P} 4-8000 \mathrm{H}-9 \mathrm{FFFH}$
$0 / \mathrm{P} 5-\mathrm{A} 000 \mathrm{H}-\mathrm{BFFFH}$
$0 / \mathrm{P} 6-\mathrm{C} 000 \mathrm{H}-\mathrm{DFFFH}$
$0 / \mathrm{P} 7-\mathrm{E} 000 \mathrm{H}-\mathrm{FFFFH}$

74LS139 decoder

	$0000 \mathrm{H}-1 \mathrm{FFFH}$	(ROM 1)
$0 / P$	$2000 \mathrm{H}-3 \mathrm{FFFH}$	(ROM 2)
$0 / \mathrm{P}$	$4000 \mathrm{H}-5 \mathrm{FFFH}$	(DOS ROM
0/P 3	6000H-7FFFH	Side
$0 / \mathrm{P} 0$	$6000 \mathrm{H}-67 \mathrm{FFH}$	Side
$0 / \mathrm{P}$	6800H-6FFFH	Side
$0 / \mathrm{P} 2$	7000H-77FFH	Side
P	7800H-7FF	- Side B

$0 / \mathrm{P} 1$ - $2000 \mathrm{H}-3 \mathrm{FFFH}$ (ROM 2)
$0 / \mathrm{P} 2-4000 \mathrm{H}-5 \mathrm{FFFH}$ (DOS ROM)
$0 / \mathrm{P} 3=6000 \mathrm{H}-7 \mathrm{FFFH}-\mathrm{Side}$ A \uparrow
$0 / \mathrm{P} 0$ - $6000 \mathrm{H}-67 \mathrm{FFH}$ - Side B
$0 / \mathrm{P} 1$ - $6800 \mathrm{H}-6 \mathrm{FFFH}$ - Side B
0/P 2 - $7000 \mathrm{H}-77 \mathrm{FFH}$ - Side B
$0 / \mathrm{P} 3$ - $7800 \mathrm{H}-7 \mathrm{FFFH}$ - Side B

The 74LS139 in the VZ200 has two unused outputs of particular interest to us.
$0 / \mathrm{P} 1$ - Pin 6, side A - $4000 \mathrm{H}-5 \mathrm{FFFH}$ (8 K Block)
$0 / \mathrm{P} 2$ - Pin 12, side B - 6000H-67FFH (2K Block)
You'll notice that's the 10 K Cartidge area. I used the 2 K decoded $0 / P$ for the $2 K$ Zero Power Ram as described in last issue which saved me building a decoder. I'm lazy, if it's already there I'll use. Why reinvent the wheel. Happy hacking.

```
0 '***********************************************************
2 '* CONVERT DEC TO HEX TO BINARY TO LO-BYTE AND HI-BYTE *
** MODIFIED AND ENHANCED FOR THE UZ BY DAVE MITCHELL *
6 '*********************************************************
8:
10 POKE30862, 0: POKE30863, 114:POKE29184, 243: POKE29185,201
20 POKE30777, 1:Z$="
30 CLS:PRINT" THIS UTILITY WILL DISPLAY THE EQUIVALENT";
40 PRINT" VALUES OF DECIMAL, HEX AND BINARY ON THE SCREEN"
5 0 ~ P R I N T " ~ A N D ~ T O ~ T H E ~ P R I N T E R . " '
```



```
110 AA$=INKEY$:A$=INKEY$:IFA$=" "THEN110
120 SOUND30,1
130 IFA$="A"THENGOSUB 180:GOSUB230:GOTO110
140 IFA$="B"THENGOSUB180:GOSUB240:GOTO110
150 IFA$="C"THENGOSUB 180:GOSUB250:GOTO110
160 IFA$="D"THENGOSUB180:GOSUB720
170 GOTO110
180 PRINT@0,Z$:PRINT@32,Z$:PRINT@64,Z$:PRINT@96,Z$
190 PRINT@0,"DECIMAL =":PRINT@32,"HEX ="
200 PRINT@64,"BINARY =":PRINT@96,"L.S.B ="
210 PRINT@113,"M.S.B. =":RETURN
220 PRINT@448,Z$:RETURN
230 GOSUB410:GOSUB540:GOSUB260:RETURN
240 GOSUB470:GOSUB540:GOSUB260:RETURN
250 GOSUB620:GOSUB420:GOSUB260:RETURN
```



```
270 AA$=INKEY$:A$=INKEY$:IFA$<>"Y"ANDA$\langle>"N"THEN270
280 SOUND30,1
290 PRINT@480," ";
300 IFA$="N"THEN400
310 IFC<=32767THEN330
320 LPRINT"DECIMAL VALUE ="C;" ( ";INT(C-65536);")":GOTO340
330 LPRINT"DECIMAL VALUE ="C
340 LPRINT" HEX VALUE = ";H1$
350 LPRINT" BINARY VALUE = ";C$
360 LPRINT"LEAST SIGNIFICANT BIT=";E2
370 LPRINT"MOST SIGNIFICANT BIT =";E1
380 REM LINE 309 LPRINTSTRING$(20,46)
390 LPRINTSTRING$(20,46)
400 C$="":H1$="":RETURN
410 B$="":PRINT@448,"ENTER DECIMAL VALUE";:INPUTD:C=D:GOSUB220
420 X=USR(0):B=D/2:D=INT(B):IFB=DTHENB$=" 昂 + B$ELSEB$=" 1"+B$
430 IFD>0THEN420ELSEPRINT@74,B$
440 C$=B$:B$=""
450 PRINT@9, C:IFC<=32767THENRETURN
460 PRINT@20,CHR$(104);" ";C-65536;CHR$(105):RETURN
470 D=0:PRINT@448,"ENTER BINARY ";:INPUTB$:C $=B$:GOSUB220
4 8 0 ~ X = U S R ( 0 )
490 FORI=LEN(B$)TO1STEP-1:IFMID$(B$,I,1)="1"THEND=D+2^(LEN(B$)-I)
500 NEXT:PRINTQ74,C$
510 IFD<=32767THEN530
520 PRINT®20,CHR$(104);" ";INT(D-65536);CHR$(105)
5 3 0 ~ P R I N T @ 日 , ~ D : C = D : D = 0 : B \$ = " " : I = 0 : R E T U R N
540 X=USR(0):AD=C
550 B=INT(AD/256):E1=INT(B):GOSUB580:H$=B$
560 B=AD-(256* B ):E2=INT(B):GOSUB580:H$=H$+B$
570 PRINT@42,H$:H1$=H$:PRINT@ 105, E2:PRINT@121, E1:RETURN
```

```
580 H=INT(B/16):L=B-(H*16):B$=""
5 9 0 ~ D = H : G O S U B 6 0 0 : D = L : G O S U B 6 0 0 : R E T U R N ~
600 IFD>9THENB$=B$+CHR$(55+D)ELSEB$=B$+CHR$(48+D)
6 1 0 ~ R E T U R N
620 PRINTQ448, "ENTER HEX EG. 0000 ";:INPUTH$:H1$=H$:GOSUB220
630 X=USR(0):H$=RIGHT$(H$,4)
640 HH$=LEFT$(H$, 2):GOSUB680:E=H*256:E1=H
650 HH$=RIGHT$(H$, 2):GOSUB680:E=E+H:E2=H
660 PRINT@42,H1$:D=E:C=E:B$="":PRINT@105,E2:PRINT@121,E1
6 7 0 ~ R E T U R N
680 H=0:A$=LEFT$(HH$, 1):GOSUB700:H=D*16
690 A$=RIGHT$(HH$, 1):GOSUB700:H=H+D:RETURN
700 D=ASC (A$):IFD<58THEND=D-48ELSED=D-55
710 RETURN
720 B$="":PRINT@448, "ENTER LSB.";:INPUTS:GOSUB220
730 PRINT@448, "ENTER MSB.";:INPUTM:GOSUB220:X=USR(0)
740 D=S+256*M:C=D:S=0:M=0:GOSUB420:GOSUB540:GOSUB260:RETURN
```


VZ MODS INFORMATION BY ROSS TMOODS

MOD I FY Y N G V Z 200 / 30016 K R A M EXPANSION
Use of the UZZOD RAM PACK will give only $6 K$ EXTRA to the $V Z$ 300 COMPUTER. To get the FULL 16 K with UZ300 we refer you to an article by STEVE OLNEY in ETI, FEBRUARY 1986, (Page 71-74). The modification involves "PIGGYBACKING" of an extra IC, a (74LS00) and cutting of ONE PCB TRACK. (It is possible to fit a SWITCH SO THAT IT CAN BE USED WITH BOTH VZ 200 (300 COMPUTERS).

On the other hand you may want to use a UZ300 RAM PACK with a YZ200 COMPUTER, the details of this modification is normally supplied together with the instructions for the RAM PACK from DICK SMITH ELECTRONICS. It involves moving LINKS on the PCB. (It may be possible to fit a SWITCH SO THAT IT COULD BE USED WITH BOTH VZ 200 / 300 COMPUTERS).

INCREASINGUZ200/300 INTERNALMEMORY SUPER II UZ200 MODIFICATION - ETI PROJECT 687

The SUPER II 34 K MEMORY BOARD REPLACES THE VZ 200 INTERNAL 6K MEMORY BOARD. The new Top of MEMORY now is 'FFFF'. This Project was PUBLISHED in ETI JULY 1986, .. Pages 55-60 by MATTHEW SORREL. It uses $4 \times 8 \mathrm{~K}$ \& 1 x 2 K MEMORY chips on a PCB REPLACING THE VZ200 INTERNAL 6K MEMORY PCB.

FOR those who have a UZ 300 and require FULL EXPANSION to Top of MEMORY 'FFFF, there was an article in ISSUE Number 3, Page 12-13 by Dave Boyce in the Hunter Valley VZ Users, Group Newsletter (Now known as HUNTER VALLEY UZ JOURNAL).

Write to Dave BOYCE or H.V.VZ Users' group for more information.
ENQUIRIES RE ETI BACK ISSUES OR PHOTOSTATS OF ARTICLES WRITE TO ETI READER SERVICES, 180 BOURKE RD. ALEXANDER N.S.W. 2015.
OR PO BOX 227 WATERLOO, N.S.W. 2017.
COST OF BACK ISSUES $\$ 4.00$ IF AVAILABLE.
COST OF PHOTOSTATS $\$ 4.00$ (ARTICLE IN 1 ISSUE).
COST OF PHOTOSTATS $\$ 8.00$ (ARTICLE IN 2 OR MORE ISSUES).
One source for ETI 687 P.C.B. Supplies is :-
R.C.S. RADIO PTY. LTD. Phone (02) 5873491

651 FOREST ROAD BEXLEY 2207 AUSTRALIA

Most of the VZ's BASIC words that were never enabled in the $V Z$ have dedicated processing routines in ROM. Each of these words is listed along with its token code, its start address in the WORD TABLE, and the start address for the routine that processes it. The routine addresses are listed in decimal, then in LO HI format (where address $=$ LO+HI *256) and in hex.

```
NOTE :- Continued on next page . . .
```

$\begin{aligned} & \text { TOKEI } \\ & \text { ADD. } \end{aligned}$	TOKEN	WO	foutine		ADDRESS		TOKEN			ROUTINE		ADDRESS	
5712	128	END	7598	174	29	IDAE	5983	192	VARFTF	no	ADD	ESS	LIST
5715	129	FOR	7329	161	28	1CAI	59.89	193	USR	No	ADD	ESS	LIST
5718	130	RESET	312	56	1	0138	5992	194	EFL	No	ADD	ESS	LIST
5723	131	SET	309	53	1	0135	5995	195	ERR	No	ADD	ESS	LIST
5726	132	CLS	457	201	1	0169	5998	196	STRING\#	N No	ADDF	Ess	LIST
5732	134	Random	467	21	1	0103	6010	198	FOINT	No	ADD	ESS	LIST
5738	135	NEXT	8986	182	34	2286	6020	200	MEM	No	ADDF	EsS	LIST
5742	136	DATA	7941	5	31	1F05	6023	201	INKEY:	No	ADDF	ESS	LIST
5746	1.37	INFUT	8602	154	S	219 A	6029	202	THEN	no	ADDF	Ess	LIST
5751	138	DIM	9736	8	38	2608	60.3	20.3	NOT	No	ADD	Ess	LIST
5754	139	READ	8687	239	33	21EF	6036	204	STEF	No	ADD	Ess	LIST
5758	140	LET	7969	33	31	1 F21	6840	205	+	NO	ADDF	Ess	LIST
5761	141	GOTO	7874	194	30	$1 \mathrm{EC2}$	6041	206	+	NO	ADD	ES5	LIST
5765	142	fun	7843	163	30	leas	6042	207	*	NO	ADDF	Ess	LIST
5768	143	IF	8249	57	32	2039	6043	208	1	No	ADDF	ESS	LISt
5770	144	FESTORE	E 7569	145	29	1091	6044	209		NO	ADI	ESS	LIST
5777	145	gosub	7857	177	30	1EB1	6045	210	AND	No	ADD	Es	LIET
5782	146	RETURN	7902	222	30	1EDE	6048	211	OR	NO	ADDF	ESS	LIST
5788	147	REM.	7943		31	1 F07	6050	212	\rangle	NO	ADDF	SS	LIST
5791	148	Stop	7953	169	29	9	6051	213	$=$	No	ADDF	ES	LIST
5795	149	Else	7943	7	31	$1 F 0$	6052	214	-	NO	ADDF	Ess	LIST
5799	150	COFY	14610	18	57	3912	6055	215	S6N	2442	138	9	098A
5805	151	COLOR	14493	157	56	3890	6056	216	INT	2871	55	11	0E37
5808	152	VERIFY	14136	56	55	3738	6059	217	ABS	2423	119	9	0997
5814	153	DEFINT	7683	3	30	1 EDS	6062	218	FRE	10196	212	39	27D4
5820	154	DEFSNG	7686	6	30	1ED6	6065	219	INP	10991	239	42	2AEF
5826	155	DEFDEL	7689	9	30	1 E09	6068	220	fos	10229	245	39	27F5
5832	156	CRUN	14126	46	55	372 E	6071	221	Saf	5095	231	19	1 SE7
5836	157.	MODE	11875	79	46	2EES	6074	222	FND	5321	201	20	1409
5840	158	SOUND	11253	245	43	2BF5	6077	223	Log	2057	9		0809
5845	159	FESUME	8111	175	31	1 FAF	6080	224	EXF	5177	57	20	1439
5851	160	OUT	11005	251	42	2 AFB	6085	225	COS	5441	65	21	1541
5854	161	ON	8044	108	31	1F6C	6086	226	SIN	5447	71	21	1547
5911	175	LPRIINT	8295	103	32	2067	6089	227	TAN	5544	168	21	$15 A B$
5920	177	FOKE	11441	177	44	2CE1	6092	228	ATN	5565	189	21	15ED
5924	178	FRINT	8 BaS	111	32	206F	6095	229	FEEK	11434	170	44	2CAA
5929	179	CONT	7652	228	29	1 DE4	6129	239	CINT	2587	127	10	6A7F
5933	180	LIST	11054	46	43	2B2E	6135	240	CSNG	2737	177	10	QAE1
5937	181	LLIST	111649	41	43	2829	6137	241	CDBL	2779	219	10	GADE
5942	182	delete	11206	198	43	2BC6	6141	242	FIX	2854	S8	11	0.26
5948	18.3	Auto	3200		32	2008	6144	243	LEN	10755	8	42	2 ADF
5952	184	clear	7802	122	30	1E7A	6147	244	STR:	10294	54	40	28.36
5957	185	CLOAD	13910	86	54	3656	6151	245	VAL	10949	197	42	$2 \mathrm{AC5}$
5962	186	csave	13481	169	52	34A9	6154	246	ASC	10767	15	42	2AbF
5967	187	NEW	6785	73	27	1849	6157	247	CHF\%	10783	31	42	2A1F
5970	188	tab ${ }^{\text {c }}$	NO	ADDFE		LIST	6161	248	LEFT	10849	97	42	2 Ab 1
5974	189	TO	No	ADDR		LIST	6166	249	RIGHT	10897	145	42	$2 A 91$
5978	191	USİNG	NO	ADDRE		LIST	6172	250	MID*	10906	154,	42	$2 A 9 A$

The WORD TABLE divides into three parts.
Words from END (token 128) to NEW (token 187) are all words that must begin a BASIC statement if they are used at all. Some (such as END, CLS, NEW, STOP) must stand alone as the entire BASIC statement. Others (NEXT, PRINT, RUN, etc.) may stand alone as an entire statement or be the primary word of an extended statement. Each of these words has a two byte pointer in the POINTER TABLE that follows the WORD TABLE. The pointer contains the address (in LO HI format) of the routine that executes the word (don't worry, it's quite official--our VZ is no murderer).

Words from SGN (token 215) to MID\$ (token 250) are all words that cannot occur at the start of a BASIC statement. Each has a pointer in the POINTER TABLE which precedes the WORD TABLE, where again the pointer addresses a processing routine (execute!) for that word.

Words from TAB((token 188) to (token 214) do not have pointers in either of the POINTER TABLES. They are executed by the primary words of statements in which they occur. Strictly speaking it is the tokens that do all the dirty work. The wards are just there for the convenience of the human operator. imagine trying to figure out a program listing which only displayed tokens.
5640 to 5711: ROUTINE POINTER TABLE 1
5712 to 6177: WORD TABLE
6178 to 6297: ROUTINE POINTER TABLE 2

NOTES ON PROGRAM WORDS FROM LAST ISSUE :-
When the program is RUN, tokens 205 to 208 and 212 to 214 designate words that display on screen as graphic characters. The program is accurate. The first byte of each word being in inverse form to mark the start of a new word. This is strictly true for words which begin with alphabetical characters, the majority, but not for those few words that consist of nonalphabetical characters. A more accurate wording would be:-
"The first byte of each word being the ASCII character code + 128 to mark the start of a new word." For alphabetical characters, adding 128 to the ASCII code will yield the inverse character code. Most BASIC words begin with an alphabetical character, so most of the the words in the WORD TABLE will begin with an inverse character. However, a few BASIC words consist of a single nonalphabetical character: $+,-, *, /, \uparrow,\rangle,=;\langle$

They too are represented in the WORD TABLE by the ASCII code +128 , but this does not yield the inverse character codes. On the $V Z$, for those characters with ASCII codes less than 64, the inverse character code is the ASCII code +192 . Still, when the UZ BASIC INTERPRETER comes across one of these words in the WORD TABLE, it subtracts 128 to get the ASCII code.

Add this line to the WORD program to get it to identify the few BASIC words that consist of single, nonalphabetical characters:-

5712 128：197토 78N 68D
5715 129：198
5718 130：210텨 69E 835 69E 84T
5723 131：2115 69E 84T
5726 132：195 76 835
5729 133：129－0 0
5732 134：129－0 0 0 0 0
5738 135：206Nㅔ 69E 88X 84T
5742 136：196追 65A 84T 65A
5746 137：2011 78 N 80P 85U 84 T
5751 138：1．96빅 731 77M
5754 139：2101ted 69E 65A 68D
5758 140：204는 69E 84T
5761 141：199［E 79084 T 790
5765 142：210～ㅓ 85 U 78 N
5768 143：2014 70F
5770 144：2101：69E 835 84T 790 82R 69E
5777 145：199［4 79083585 L 66B
5782 146：210 ${ }^{\text {ta }} 69 \mathrm{E} 84 \mathrm{~T} 85 \mathrm{~L} 82 \mathrm{R} 78 \mathrm{~N}$
5788 147：2104E 69E 77M
5791 148：2118 84T 79080 P
5795 149：197 벼 76L 835 69E
5799 150：195댄 $79080 \mathrm{P} 89 \%$
5803 151：195比79076L 790 82R
5808 152：214W 69E 82R 731 70F 89Y
5814 153：129—0 0 0 0 0
5820 154：129—00000
5826 155：129－00000
5832 156：195L 82R 85U 78N
5836 157：2054 790 680 69E
5840 158：2115 790 85U 78N 68D
5845 159：129—00000
5851 160：207以 85U 84T
5854 161：129－ 0
5856 162：129－0 0 0
5860 163：129－0 0 0 0
5865 164：129－0 0
5868 165：129．00
5871 166：129 0 0 0 0
5876 167：129－0 0 0
5880 168：129—0000
5885 169：129－00 0
$5889170: 129 \div 00$
5893 171：129—0 0 0
5897 172：129—0 0 0
5901 173：129—0 00
5905 174：129－0 0 0 0
5911 175：204世 80P 82R 731 78N 84T
5917 176：129—0 0
5920 177：208H 790 75K 69E
5924 178：2081레․ 82R 7SI 78N 84T
5929 179：19더 790 78N 84T
5933 180：2044 73183584 T
5937 181：204땐 76L 731 835 84T
5942 182：129—0 0000
5948 183：129 000
5952 184：195 둔 76L 69E 65A 82R
5957 185：195 76 L 790 65A 68D
5962 186：195巴 8.3565 A 86 V 69 E
5967 187：206䍀 69E 87W
5970 188：212山 65A 66E 40（
5974 189：2121 790

5976 128：129 ■
5978 129：213 835 73I 78N 716
5983 130：129 0 0 0 0 0
5989 131：213世 835 82R
5992 132：129．00 0
5995 133：129－ 00
5998 134：129－000000
6005 135：129－ 0000
6010 136：2081 $79073178 N 84 T$
6015 137：129—0000
6020 138：129－ 0
6023 139：201 4 78N 75K 69E 89Y 36\＄
6029 140：212H 72H 69E 78N
6033 141：20614 79084 T
6036 142：2115 84T 69E 80F
6040 143：1714 WORD IS＋
6041 144：173m WORD IS－
6042 145：1701 WORD IS＊
6043 146：175喵 WORD IS／
6044 147：222둔
6045 148：193H 78N 68D
6048 149：20710 82R
6050 150：190 WORD IS＞
6051 151：189m WORD IS＝
6052 152：188 WORD IS＜
6053 153：2115 716 78N
6056 154：201㥜 78N 84T
6059 155：193 1 66B 835
6062 156：129＝0 0
6065 157：2014 78N 80P
6068 158：129．00
6071 159：2115 810 82R
6074 160：210 ${ }^{6}$ 78N 68D
6077 161：204뚠 790716
6080 162：197E 88X 80Р
6083 163：195던 790 835
6086 164：2115 731 78N
6089 165：2121 65A 78N
6092 166：193Til 84T 78N
6095 167：2081E 69E 69E 75K
6099 168：129 00
6102 169：129 0 0
6105 170：129 0 0
6108 171：129．00
6111 172：129－00
6114 173：129．00
6117 174：129－000
6121 175：129—000
6125 176：129．000
6129 177：129－0 0 0
6：133 178：129－000
6137 179：129 000
6141 180：129 0 0
6144 181：204牟 69E 78N
6147 182：211B 84T 82R 36\＄
6151 183：2141혀 65A 76L
6154 184：193世 8．35 67C
6157 185：195ㄸㅓㅕ 72H 82R 36\＄
6161 186：204围69E 70F 84T 36
6166 187：2101 73I 71G72H 84T 36
6172 188：2051ill 731 68D 36

D.S.E. GAME - GALAXON - CAT.\#X-7352

Well D.S.E. have done it again, another excellent $V Z$ game. I wonder how long they have been sitting on this beauty ?

Anyway, let me tell you about Galaxon :-
You must fire at a pack of aliens above you, while trying not to be hit by the diving aliens yourself.

These aliens dive on you from the pack and try to crash into you. To make matters even worse, these diving aliens drop bombs that will surely killyou if you don't avoid them.

In the attacking pack there are three different types of alien and each type is worth a different score.

Also there are more points awarded for hitting the aliens while they are diving rather than hitting them while they are just sitting still in the pack.

If after all this, you manage to avoid the aliens, they reform in the pack at the top of the screen. You get three lives and also get an extra life for every 10,000 points you score.

You would really have to see and play this game to really appreciate how good it really is. It's not an easy game to play, and who would want it to be.

I liked this game from the moment it started loading. First you get a Galaxon title page, followed by an instruction page, which you have a chance to read while the game is loading.

Key control is excellent, as is the joystick option. One thing I felt was a good idea, was using the (J) or (K) key option to start each new game instead of the (S) key. That way if you get sick of using your joysticks and feel like a change, you don't have to switch off and reload to use the keys. (REMEMBER Don't plug in or unplug your joysticks without first TURNING off your UZ, you will do damage to your system if you do).

Galaxon is like a vz invaders game when you first get started, but are you in for a surprise when these aliens really start moving.

The game is fast moving and excellent use is made of the VZ's graphics and sound effects.

I had trouble turning off my computer once i had started playing this game, and when this happens you know you've got a winner. The programmer "Stephen Clarke" should write and market his own software, if this game is anything to go by.

Anyway, "Galaxon" must follow as a very close second, when it comes to super $V Z$ programs, just behind "Dawn Patrol". D.S.E. haven't had many programs as good as this one, which is a shame, because we users know what the VZ is capable of. Don't we ! !

Now that You have made Your AEM4505 SPEECH SYNTHESISER, let's add what could be best described as a TONE control. Before continuing with the construction changes, a word of WARNING.

The two Tone controls should be left in their central positions and only moved minimum amounts to suit ones, own taste. Move the controls TOO far and the Speech Synth will go into Oscilation, if the RESET button doesn't regain control then powering down of the Speech Synth (only) will be necaessry.

YOU have been WARNED.
Construction Notes :-.

1) Using a small piece of Vero-board, construct the circuit diagram as shown. I suggest that sockets be installed under the two Ic's. Although the diagram looks involved, there are very few wires to connect to the Main $4505 \mathrm{P} . \mathrm{C}$. B. These being : -

GND - 0 Volts
+5 Volts
1 wire from the output of the $74 L S 00$ gate to the SPO chip plus
2 wires to the PITCH control and
3 wires to the RANGE control from the small board to the pots.
2) Remove capacitors C4 and C5.
3) Remove X-TAL2, it's next to the SPO chip.

Reconnecting Notes :-
4) Solder the GND (0 V) wire to the 4505 P.C.B. followed by the +5 Volt wire.
5) Next - solder the wire marked TP on the diagram below into the hole nearest the SPO chip left vacant by the X-TAL. This hole is connected on the P.C.Board to pin 27 of the SPO chip.
6) Connect the remaining wires to their respective control pots.
7) On the BACK of each Control Pot, assuming they are metal, scratch the surface until you have a elean surface. Tin each of these bare spots. From the GND terminal of either the VOL or RANGE pot, run a wire to the back of each pot and solder to the 'Tinned Bare Spots'. This will stop (hopefully) the pots acting as antennas when you touch them - honest.
8) Reconnect any other wires that may have been disconnected when you started on the job.
9) Set the two new pots to their central positions.
O.K. Connect the Speech Synth back onto the $V Z$ and turn on. Everything alright? Did you get the familiar, OK from the Speech Synth? If not then turn off and check everything from the start.

Load in and RUN "TALK A" and check that the two contróls are working.

NOTE : - Circuit Diagram and Parts List on next page. . .

Parts List for the Tone Control for AEM 4505 Speech Synth. Dick Smith catalogue numbers given where possible.

1-74LS529-ALTFONICS Z 8427
1-74LSOD - DSE Z-4900
1-470R resistor - DSE R-0566
1-10K resistor - DSE R-0597
1-100K resistor - DSE R-0624
1-27pF ceramic capacitor - DSE R-2245 See note below.
$1-2 \mathrm{u} 235$ volt Tantalum capacitor - DSE R-4750
1-47K or 50k potentiometer - DSE R-1809
1-220k potentiometer. Yes Virginia, they do exist.
1-14 PIN DIP sacket - DSE F-4140
1-16 FIN DIP socket - DSE P-4160

Note on $27 p f$ cap. : The value of this cap. may have to be varied from anywhere between $18 p f$ and $33 p f$. A trimmer cap. from D. Smiths can also be used in place of the fixed value cap. D.S. No\# - R2930. It is possible to mount the small board on the back of one of the control pots, this will save using long wires to that pot, PLUS, it saves having to find a mounting place for the small board.

I have made this modification to both my original Speech Synth and my (home made version of the) AEM4505, in either case, the mod works quite well.

Cost - $\$ 12$ to $\$ 15$ - Happy Hackin'. Dave Boyce June ' 87
Routine to make the unit Talk.
100 A\$="HELLO-THERE"
110 REM WHERE A $\$$ is to be output to the Speech Synthsiser
120 GOSUB 15020 : REM OR GOTO
This is the sub-routine to be used :-
15010 REM - IN USE $\rightarrow A \$$, A and T
15020 FOR $T=1$ TO LEN (A $\$$)
$15030 \mathrm{~A}=\mathrm{ASC}(\mathrm{MID}(\mathrm{A} \$, \mathrm{~T}, 1))$
15040 OUT 12, A : REM OUT 13,0 MAY BE NECESSARY AS WELL
15050 NEXT
15060 LPRINT:LPRINT:REM THESE MUST BE HERE
15070 RETURN : REM OR GOTO 0000 - CONTINUE ON
Make A\$ equal to any String to be output to the Speech Synth.
USE HYPHENS between words, this helps the Speech flow evenly.
2 Hyphens (or more) will slow the Speech down.
Commas have a pausing effect as well.
A (.) Period will make the Speech Pause between words (long pause). 2 Periods (..) will pause even longer.

EXAMPLES :-
$10 \mathrm{~A} \$=$ "DOGGY.WFFWFF-WFF-WFFWFF-RFF"
20 A $\$=$ "STEAM-TRAIN. SHSHSHSHSHSS, TOOT-TOOT, SHSHSH"
30 A $=$ "WHISPERING.SHSH.SH.SH-SH-SH-SHSHSH-SH-SHSHSH"
$40 \mathrm{~A}=$ = $\mathrm{MACHINE}-G U N$. GGGGGGGGGGGGGGGGGGGGGGGGGGGG": REM (28G's)

DQT MATFRIX PFRINTEFES by Larry Taylor

The VZ is a versatile, little computer, especially if teamed with a peripheral device, then that device is an EPSON type dot atrix printer, its capabilities can greatly enhance the VI's versatility.

Dot atrix printers form their characters fron a series of dots. This type of printer falls into one of two categories either inpact or non-impact. There are three main types of non-impact printers, thermal, electrostatic and ink jet. Thernal print heads contain a set of fixed pins, which are heated rapidly to produce a dot on, specially treated, heat sensitive paper. Electrostatic print heads, also consist of fixed pins, which produce a tiny electrical discharge between the pins and an aluniniun coated paper, forning the dot. lnk jet print heads are comprised of a vertical line of pin holes, through which a fine jet of ink is squirted onto the paper to create each dot.

Currently, iapact type printers are the sost common. The print head in an iapact type printer usually consists of a line of pins arranged vertically. These pins strike against an inked ribbon to leave an impression on the paper. Each pin can be fired independantly. By firing all or some of these pins, a column of dots can be formed. The matrix used for aost upper case (capital) letters is 5 dots wide and 7 dots high. To produce a character, the pins are fired foraing a colum of dots. The print head then noves one dot position and the pins fire again. This happens three aore tiaes to produce an upper case letter 5 dots wide.

Unfortunately, while the principle of their operation is similar, dot watrix printers differ in other ways, Software codes that are sent from the computer to the printer deteraine which pins will be fired. Not all printers will react to those codes in the same way. There are basically three fanilies, EPSON, TANDY and APPLE, each conforaing to a different standard. Both the EPSON and APPLE types address 8 pin print heads, whilst the TANDY types possess only 7 pins. Each pin is given a weighted value, In the case of EPSOM types, the topmost pin has a value of 128, whilst the botton pin has the value 1. These values are reversed for APPLE and TANDY printers. The botton pin on a TANDY type is the seventh one and it has the value 64.-TANDY- type printers will only accept codes in the range from 1 to 127. The GP-100 belongs to the TANDY fanily and the UZ's ROM is set up to work with this type of printer. Since the codes used aren't coapatible with EPSON type printers, a software patch is needed. The value of such a patch can be deternined by looking at the relative aerits of the two types of printers.

The GP-100 has tractor feed only, which requires the use of paper with sprocket holes. It has a print speed of 30 characters per second (30 cps) and is capable of unidirectional (left to right) printing only, This printer has both character and graphics aodes. In character mode it posses5es just the one typeface, which has no true descenders. That is, the tails on the lower case letters g,j,p,q and y do not descend below the line as they normally would. The only typestyle change, that can be ade to the existing typeface, is that each character can be printed in double width (expanded) form.

On the other hand, software such as the VI-EPSON Printer: Patch, HORDPRD and QUICKHRITE, allows the $V 2$ to ake the most of the facilities provided by EPSON type printers. All allow EPSON codes to be sent directly to the printer.

Consequently, instead of being limited to the 6P-100's aeagre repertoire, a whole range of printers, with a host of enhanced features, is on offer. Most provide tractor and friction paper feeds, though a few require that the tractor feed be bought separately. In some cases, it nay be possible to purchase a cut paper feeder, which can be useful, when printing aultiple copies of correspondence on single sheets. Logic seeking (where the head looks to nove the shortest distance possible) and bidirectional printing the head prints on both left to right and right to left passes), aeans speeds can range fron a miniaua of 80 cps to 200 cps and aore. These speeds are, of course, optimun values.

Though most printers possess only two typefaces (character sets), pica and italic, which are stored in an internal ROM, they compensate for this by offering a variety of typestyles. Different typestyles are formed by slightly modifying each character as it is printed. These include elite, condensed and double width. A few printers also offer double height and reverse print. In addition, there are features such as subscript (below the line) and superscript (above the line), emphasized and double strike. Proportional: spacing is also available, which adjusts the distance between letters, according to their width. Some printers way have a high density (near letter quality) facility as well. With this the print head aakes a second pass along each line, filling in the gaps between the dots, which for each character, Although slower, it results in better formed character 5.

The ability to control line feeds to within $1 / 216$ of an inch is desirable when compared to the $6 P-100 \cdot 51 / 6$ of an inch. This is particularly useful to anyone, who has struggled to get nailing labels to line up on the printer. Some even allow the paper to be fed in reverse as well as forward. (This entire article was written using HORDPRO and printed in a single pass. The two coluan fornat was achieved by altering margin settings and using the printer's reverse feed.) The standard features all have recognized EPSON codes, whereas other features and their codes way vary from one printer to the next. The following table displays the codes, in decial form, along with the resulting print type.

Standard Epson Codes

[27,80] Normal Fica Frint
[27,112,1] Proportional Print
[27,77] Elite Print
[27,52] Italic frint
[14]
[15]
D:uctDIE widt円
[27,69]
Condensed Print
[27,71]
$[27,45,1]$
$[27,83,0]$
Double Strike Frint
Underlined Frint
$[27,83,1]$

Nom-Standard Codes
[27,97,1] High Density Print $[27,126,50,1]$ FEVERSED PRINT [27,104]

Whilst there is considerable standardization of EPSON print codes，there seens to be very little when it cones to the format used to present then，When exanining printer manuals，the presentation of these codes can appear quite confusing．Some examples are given below．Each is supposed to show which codes are needed to switch on Eaphasized Print．As shown in the table，this simply involves sending the two values 27 and 69 to the printer．

If you＇re confused by the above，don＇t feel bad，I found it just as difficult to understand？Basically the codes are presented in three ways，ASCII，Decieal（Base 10）and Hexidecimal（Base 16）．ESC stands for Escape and represents the Decinal value 27．In Hexidecinal form the value 27 is equal to 18．If a number has no identifying character or is followed by either a D or 10 ，then it is considered to be a decimal number．If it is followed by an H or 16 ，then it is considered to be Hexidecinal．So the three ways of representing the code required to 5witch an EPSDN printer to Emphasized aode are sumarised below．

ASCII	ESC	E
Decinal	27	69
Hexidecimal	18	45

In VI BASIC it would be accomplished by：
LPRINT CHR\＄（27）；＂E＂；
or LPRINT CHR（27）；CHR\＄（69）；
Hord processing software such as BuICKHRITE and HORDPRD allow print codes to be enbedded in the text．Since these prograns bypass the VZ＇s printer driver，any code value used will be sent directly to the printer．The following sxamples，illustrate how each of these programs enable a change of typeface at the beginning of a line．

GUICKHRITE embeds codes at the start of a line of text．The code aust be preceded by a carriage return 〈CR〉．
eg．〈CR〉［27］［52］This is a mord processing progran．
WORDPRD－uses printer controt tines which are preceded by a print flag 〈PF〉 and end in a carriage return 〈CR〉．
eg．$\langle P F>N=27,52\langle C R\rangle$
This is a word processing progran．
The result，when printed from either progran is as follows：
This is a word processing progran．
Although the anual says otherwise，WORDPRO is able to change typefaces in the aiddle of a line．The procedure is a little wore complicated and involves turning the line feed command on and off．Hy thanks to John Chapaan for supplying the method used．

[^0]Whilst both of these approaches are satisfactory，they require the user to be faniliar with all of the different print codes．Some word processing packages allow a label to be assigned to each print code，when the progran is first set up．These can then be inserted in the text as required without the user having to know the code．

One problen often experienced，when atteapting to use the $V 2$ with an EPSON type printer，is that EPSON codes often alternate the values 1 and 0 ，for switching on and off a particular feature．For instance，the code used to enable and disable underlining $[27,45, n]$ is identical，except for the last value n ．Using the value $n=1$ selects underlining， whilst the value $n=0$ turns it off．The current $V I$ printer routine will not allow the value 0 through to the printer． Therefore，switching on underlining will work，but switching it off will not，and the same applies to similarly structured codes．Also affected，is any print code value greater than 127 ，which will be interpreted by the VI＇ 5 ROM routine as being either a graphics or inverse character． Since TANDY type printers do not store any characters in this range，the value will be intercepted by the VZ＇s RDM and replaced by a streal of graphics data．Whilst this data will enable a printer such as the $6 P-100$ ，to print the character，it will not be compatible with an EPSON printer． These difficulties can be overcome by using a printer patch or by sending the value directly out the printer ports（ODH and OEH）．Print codes sent to the printer in this way，will be acted on without interference．It should be noted， however，that any characters printed by an EPSON printer， corresponding to codes in the range from 95 to 255 ，will not be the same as those displayed on the VZ＇s screen．

A nuaber of printers come equipped with a RAM buffer． Instead of the computer being tied up waiting for the printer，the buffer acts as a storage area for data to be printed and so frees the conputer sooner．A second use，is 35 an area for downloadable characters．These are shapes， which the user ay design or which are aodifications of the existing character set．By storing these shapes in the buffer，the printer can print then，as if they were part of the normal set．
In bit jaage（graphics）aode，print resolutions ranging fro 480 to 1920 dots per line are possible．This mode allows the printing of shapes not held in the printer＇s ROH and is used when doing a dump of a HIRES screen．It should be noted that the VI＇s screen is only 128 pixels wide，The printer is capable of 15 times this resolution，allowing it to depict auch finer detail than is possible on screen，

In the world of printers，the primary standard has been set by EPSON．There can be no doubt of this，since the aajority of printer and computer anufacturers produce equipment，which conforms to it．IBM＇s adoption of the standard is further confirmation．Even the TANDY printers， offer，in their latest nodels，an IBM－EPSON compatible aode． Your UZ way not be able to compete in the real world，but your printer can．Selecting an EPSON type printer to partner your VZ，weans stepping into the ainstreas of the computing world．When you finally outgrow your $4 Z$ ，you will still have a useful peripheral that＇s able to connunicate with almost any computer you happen to choose．

EXTENDED DOS VERSION 1.0 (C) COMMANDS :-
MERGE - MERGES basic file from disk with program in memory.
DIRA - See example - T:MENU B:PATCH3.1 B:WORDPROC
B:EXTDOS E B:EXTDOS R W:DOS-INST
LDIRA - As above, but to screen and printer.
DIRB - See example - T:MENU 0100 7AE9 $801 B 0532$.
B: PATCH3. 1 O1 OB 7200771 F 051 F
LDIRB - As above, but to screen and printer.
STATUSA - Prints free disk space to screen on one line.
LSTATUSA - As above, but to screen and printer, see below.
534 RECORDS FREE 63.500K FREE
OLD - Restores a program after using the NEW command.
OLD. - Prints START, 'END and LENGHT of program in memory in HEX.
DEC XXXXX - Converts DECIMAL to HEX
HEX XXXX - Converts HEX to DECIMAL
STATUSA and ISTATUSA also works with Version 1.0 DOS.
The EXTENDED DOS is available in the two versions below:-
EXTDOS R - T.O.M. SEEKING (SELF RELOCATING)
EXTDOS E - FOR 2K RAM AT 6000-67FF HEX
Price - $\$ 10.00$ each or the two for $\$ 15.00$. Availble from:-
Dave MITCHELL - (079) 278519
24 ELPHINSTONE STREET NORTH ROCKHAMPTON QUEENSLAND 4701
FOR INFORMATION IN NEWCASTLE AREA :- JOe LEON - (049) 512756

FOR SAIE - DATABASE - DISK / TAPE

DATA - $16 k$ - VZ DATABASE. Enter data into records thirty characters long (accepts graphic characters). Runs on $V Z 200+16 \mathrm{k}$ or UZ 300 . Available on disk as DISK DATABASE or on tape as CASSETTE DATABASE.

Facilities include data entry into record of choice, into last record chosen, next record, auto-next for fast data entry, edit keys so you don't have to re-enter entire content of a record, delete a record, delete a block of records, gap delete, insert, gap insert, fast alphabetical sort of records--start anywhere in records; number sort; swap any two records ; page display-ten records per page; display current page, next page, previous page, flip backward and forward through datafile, swap, any two pages, fast search of entire datafile for a sequence of characters--anywhere in records, hardcopy your records--especially suited for $V Z$ printer plotter ; menu etc.

Disk DATA has Directory and ERASE commands, saves a datafile or any part thereof as a single binary file which loads back quickly. Cassette DATA CSAVES a datafile as a single T file-no slow loading of multitudes of D files! All instructions for using DATA are stored on disk and tape as datafiles-run DATA, load an instruction file and page through it. This program certainly stands out amongst the crowd of other such programs of it's type.

PRICE - $\$ 20.00$ for DISK or CASSETTE DATABASE - Please make all Cheques and Money Orders payable to and is available from:SCOTT LE BRUN 5 CAMERON COURT WANTIRNA VIC. 3152

EDITOR ASSEMBLER TAPE TO DISK CONVERSION UTIIITY

- CONVERT YOUR EDITOR ASSEMBLER TO FULL DISK OPERATION -

UZ USER has a conversion package to convert the Dick Smith Editor Assembler (Version 1.2). All SAUES/LOADS etc. to Disk. (Version 1.1 converter coming soon).

$$
\begin{aligned}
& \text { Price } \$ 15.00 \text { inc. Fostage and is available from:- } \\
& \text { Mark Harwood (Editor), VZ USER' } \\
& \text { P.O. BOX } 154 \text { DURAL NSW AUSTRALIA Phone (02) } 651.1413 \mathrm{AH}
\end{aligned}
$$

*** * * FOR SAIE * * * * * FOR SAIE * *

FATCHS. 1 - COPYRIGHT - H.V.VZ.U.G.
This single Fatch will convert your E \& F TAPE WORD PROCESSOR for full DISK use while retaining all TAFE functions. It can be used with 1 or 2 DRIVES. Below are the two Menus.
E) DIT TEXT
L) $\triangle A D$
C) LEAR TEXT
5) AVE
P)RINT TEXT
D) $I R$
L) DAD FILE
E) $R A$
5) AVE FILE
R) EN
v) ERIFY FILE
I)NIT
Q)UIT FROGRAM
1-2) DRIVE 1
D) ISK
M) ENU

Fast SAVING and LDADING of TEXT DATA to and from Disk is provided using Block save or LoAd.

Full instructions are supplied together with a Tape to Disk transfer utility for your $E \& F$ Tape Word Frocessar.

This Patch will work with V1.0 or V1.2 Disk Controller. A STATUS facility has been added for V1.0 DOS owners.

SYSTEM REQUIREMENTS :-
DISK DRIVE + V1.0 OR V1. 2 DOS
$V Z 500+16 K$ RAM FACK OR
$V Z 200+18 K(16 K$ RAM PACK + 2K)
The price - $\$ 10.00, N Z$ AU $\$ 12.00$ and is available from :-

HUNTER VALLEY UZ USERS' GROUF
F.O.gOX 161 JESMOND 2299
N.S.W. AUSTRALIA Phone (049)51 2756

* * NEW NEW NEW * * *

QUICFWFITE WORDFFIDCESSOF

DISC EASED WORDFRDCESSOR $\mathrm{A}+4 \mathrm{O} .60$

QUICKWFITE HORDPRICESEOR IS SUITAELE FOR THE EXPARDED VZ200 AND VZSOO COMFUTERS.

QUICKWRITE is software on disc, so FAM and ROM PACKS do not have to be plugged and unplugged into the VZ which can cause loose port socket connections.

QUICKWRITE runs on either the LAEER or VZ DOS disc controiler.

QUICKinITE saves and loads document teat (data) to disc.

FEATURES.

* Fast disc saving and loading of document text (data).
* Automatic periodic saving of data while in typing mode if required.
* Tape saving and loading of data as a backup medium,
* Loading of Ex $\begin{gathered}\text { tape files (data) possible. }\end{gathered}$
* Printer font changes within the data.
* Capitals/lowar case software lock on/off.
* Accommodates wide printers - up to 255 columns.
* A Frinter/Plotter can also be used.
* Four print justify/wragged modes.
* Adequate operator warnings.
* Labelling of discs allowable, such as date, code etc.
* The usual editing facilities:-

Delete, Insert, Find and Replace, Paste, Cut etc.

* Number 1 or number 2 dise drive selection allowed.
* The price of $\mathrm{A} \$ 40.00$. includes surface postage within Australia.

[^0]: 2g．〈PF〉F＝N＜CR〉（set line feed off）
 This is a〈CR＞
 $\langle P F\rangle N=27,52\langle C R\rangle \quad$（switch italics on） word processing〈CR〉
 〈PF $2 N=27,53 \mathrm{~F}=\mathrm{Y}\langle\mathrm{CR}\rangle \quad$（italics off，line feed on） progran．
 The result，when printed is as follows：
 This is a word processing progran．
 I＇ve been informed that a recently updated version of QUICXURITE will also be able to do this．

